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L ABRSTRACT

ONE-SIDED R~-RELIABLE INTERVALS AND THEIR ASSOCIATED
CONFIDENCES ON THE SUM OF TWO CONTINUOUS,
INDEPENDENT, RANDOM VARIABLES

’ Dr. S. A. Patil A‘/[wf/(_.(y)? ,()CQS"O

The purpose of this proposal is to define and determine an
R-reliable interval and its associated confidence on the sum of two
continuous, independent, random variables with different scale para-
meters. The relationship between the confidence of the R-reliable interval
on the sum and the confidences of the R-reliable intervals on the sum-
mand variables was also investigated.

The confidence of the R-reliable interval ‘on the sum was defined,
and the largest order statistics were chosen which simplified the expres-
sion for the confidence of the R-reliable interval on the sum. The choice
of the largest order statistics led to nonparametric results for the
confidences of the R-reliable intervals on the summand.variables.

Exponential and folded normal continuous distributions were con-
sidered, and numerical values of the confidences asscciated with the R-
reliable interval on the sum were obtained for selected sample sizes and
sclected ratios of the scale parameters. A distribution-free bound for
the confidence of the R-reliable interval on the sum in terms of the
confidences associated with the R-reliable intervals on the summand
variables was cbtained. The monotonicity of the confidence of the R-
reliable interval on the sum was established for specific values of
sample sizes.
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1. INTROSUCTION

wWilks [1] investigated the P-reliable interval [L,U]
with Neyman-Peason confidence coefficient C such theat
U
P[f £(x)dx > R] = C(R (1.1)
L
where L,U are functions of a random sample from the distri-
bution of ¥ and f(s) is the probability densitv function
(pdf) of X . He obtained a nonparametric P-reliable interval.
for x. Wilks [2] has given an extensive survey of order
statistics and their epplicetions to R-reliable intervals
and has given an extensive list of references on the subject.
Guenther [3]) discussed the proklem cf R-relizkle intervals
for lNormal, Garma, and Poisscn distributicns. HMore recently,

this sukject has also been investicated by Locasso (4] and

Bevensee [5]. If L &and U are statistics (funciicns of a
rarndom comple), then a definition of a Yevman-lPearsen R-

relizble interval is civen by

P[F(L 2 »x < C) > R] = CIR). (1.2)

-y L £ 3 : : H .2 - . I K N e -
Thic definitinn 1c ecoulvelaent te the cefinicion riven -ty

Wilks {1]. 1te referred to this interval as a "100 %
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and so we refer to it as an R~reliable interval. ESuppose Y
denotes a random varieble which is the (negative cf the
logarithm of the) stress on a component of a ccrplex system
(such as an airplane), and Z denotes the random variable
which is the (logarithm of the) threshcld of failure of
components of that type to that kind of stress. Also, the
random variables Y and Z are independent. Then X = Y + Z is
the safety margin of components of that kind to stress of
that type. Also, if Y,Z2 denote the lifetime of two identical
corponents of a system in which the second component takes
over when the first fails, then the reliability of the system
can be related to the reliability of the distfﬁbution of X.
We are interested in finding an R-reliable interval on the
sum and its associated confidence, knowing the‘R-

reliable intervals for ¥ and Z and their asscciated confi-
cences.

Svppose Y. ,Y, ,...,¥Y , Z Z_ denote random

2o
1 m' “1'727 "m
camples, from the distributions of Y and 2, respectively. |

et T and T  be scme statistics from these sarnles. Then

ligkbilities R, 0. > 0, the P-relickle irnterval for Y

fimilarly, the R-relicbLle interval for 2 is (0,T.) und its

ccnfidence ic determined hy

[TORN |
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PIP(0 < Z < T,) > R;1=Cu(R,). (1.4)

If the statistic T is a function of order statistics, then

the confidences in the equations (1.3) and (1.4) can be deter-
mined irrespective of the underlying distributions of Y and

Z; and therefore, they are distribution free. Our objective
is to find an R-reliable interval on the sum X and its asso-
ciated confidence for different distributions and determine a
non-parametric bound on the confidence in terms of the con-
fidences of the R-reliable intervals of the summand variables.
Ashley [6] stated a non-parametric bound on the confidence

for the R-reliable interval on the sum X as
CX(RYRZ) = P[P(0 < X < TY + TZ) > RYRZ] > CY(RY)CZ(RZ). (1.5)

This inequality relates the confidences on R-reliable inter-

vals of Y and Z with the confidence on the R-reliable inter-

val of X. Also it is non-parametric because it does not assume

anything about the distribution of Y and Z. However, the
procuct CY(RY) (CZRZ) is not a satisfactory bound because
CY(RY) CZ(RZ) becomes too small. Also, the product RYRZ
decreases rapidly and the reliability on X becomes too small.
The above R-reliable interval could be strengthened if in the
inequality (1.5), the product RYRZ is replaced by the signi-
ficantly larger value min’'R

Y‘RZ}’ Thus, inequality (1.5)

becones

Y =

L0
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Cy (min{Ry,R,}) = P[P(0 < X < T+ T )] > miniR, R }

The inecuality (1.6) increases the reliability but the
associated confidence CY(RY)CZ(RZ) is unchaﬁged. Hence, a
larger confidence such as min(CY(RY),CZ(RZ)) would be more
useful.

In this development, we focus our attention on the
problems of obtaining non-parametric bound on the confidence
of the sum Cx and determining the exact confidence on the R~
reliable interval of X for various distributions of ¥ and 2.
Sepcifically, section 2 deals with the mathermatical develop-
ment of determin ing CX when ¥ and Z have diffasxent scale
parameters.

In the following sections, a procedure fcr comparing
the confidence of the sum with those of the summands is dis-
cussed. The exact confidences are obtained and tebulated
for various distributions and the confidences are coroared
numericallv. The R-reliable interval for disiribufion on
(-=,») are briefly discussed. Finally, a cenzlusion is

given and some unsolved problems are mentioned.
2. MATHEMATICAL DIVELOPHMELT

In thisz zection, we consider the mathematical theory

re
g
(as
'—J

cads tc the development of the R-reliable intervel 2and

ccliated confidence.
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then an

5
'ith the vrobability density function (pdf) l/GnyV@y) '
where GY is the scale parameter. Similarly, the randcm
- o mk tree 5 3 1/¢ £(z/0)
variable Z is distributed on (0,«) with pdf z- VY, .
Further, Y and Z are independent. We define i to be the sumof Y and Z,

R-reliable interval on X is to be determined. Let Yl’ Yz,
. o ey Ym’ and Zl, Z2, « o ey Zn be random samples of sizes
m,n from the distribution with pdf's 1/8,f(y/Q) ard .1/0,£(z/0))
respectfully. Let the statistics TY and TZ be definad as
TY = T (Yl, YZ' « o e Ym)
and ’
TZ = TZ(Zl, Z2' . e ey Zn).
Then for a given reliabili+y R> 0, the R-reliable interval
for 2 is (0O, TY + TZ) and its asscciated confidence is deter-
mined by

C.(x,m,n) = P[P[0 <« X < T, +T,] > R] (2.1)
Y o -
vhere o= S, /0, > 1. lote that if C,/6, < 1, ¥ and I are
i O -

CX(A,m,n) = oir{¢C -~ v + 2 - TY + TZ] o R]
Y Z Ty Yo
= 2 {1{0 7 — 4 == < — 4+ =] > R]
Y Y Y Y
. - -
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X(A,nb n = o[P[0 < v' o+ az' o< TY + Aré] > R] {2.2)
! Y ! Z 1 TY ' °
where Y =57, Z == Ty = g and T, = — . The raniom
Y 2 Y "2

. ' ' . -~ .o« . . .
variables ¥ and 2 are independent and identically distri-

buted. The distributions of T; and T; do not depend on Gy,

ez and are the statistics from the rancom samples Zrom the

distributions of Y'and z'. For fixed value of T; + AT;,

equation (2.2) can be expressed in terms of guantile of the

distribution of Y' + A2' = x'. The distribution of X' can

be written as

G(x') = PIX < x"]

ply' +az <x'], (2.3)

. s . s oq s ' t . . .
which is the probability of vy and z lying in. the tri-
angular region shown in figure (2.1).

zl

AN

N
AN

N

> 1]
7 Y

. ' ! . - . - . .
Since Y and 2 are independent and identically distributed,

*he eguation (2.3) is eupressed in an integral  foom, as

.
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1 X /A )
G({x ) = | £(z)F(x - &Az)dz . (2.5)
0
Similarly, integrating equation (2.4) with respect to z,
first we f£ind
]
! * x' -y
G(x ) = [ f(y)F(*—x9)ay (2.6)
0

vhere F is the distribution function of Y. Fquations (2.5)
and (2.6) can be used to find the quantile of the distribu-
tion of X. Let EA(R) = §{ be the RER gquantile of the distri-

bution of X . Then £ can be determined by

G(§) = P[0 <X <& =R. (2.7)
For a given T; and Té, the statement
P[0 < ¥ + Az’ < Ty + AT,] > R (2.8)
irplies T; + ATé > £. Hence, the confidence C,{A,m,n) can

be written as

' '
CX(A,m,n) = P[TY + AT, > 2]

There are a nurmber of cheoices for the statistics 7, cna T
such as range, midrange, order statistics, rnieon, etc. How-

1

ever, one is usually interested in knowing vihiat parcentage

the probability lics lLelow the mean or the larcest order




In this develcpment, the largest crder statistics are
chosen because the corresponding P-reliable in<erval feor Y
and 2 are distribution free. Also, the associated confidence
of the sum X could be compared with those of Y and Z. Then,
the R-reliable interval for X kecomes (0, T(m) + T(n))' vhere

T and T(n) are the largest crder statisiics £rom the

(m)

random sample from the distributions of Y and Z. The

confidence associated with this interval is

] * 1
CX(A,m;n) =1 - P(T(m) + AT(n) < g) o (2.
T T )
v D) c T o obapil:
where T(m) = 6Y and T(n) = ez . The probakility
] t . H ' . . .

A £ mpli by b

P[T(m) + T(n) < £] implies that T(m) and T(n),lle inside

the triangular region of figure (2.2).
. AN
T (n)

Then eguatior. (2.10) reduces to

C.(am,n) =1 -n  [Flz)]" " [F(I-1z,}"
by 5

o~
[ ]
.~
o,
tl

4

or ctuivalently




g - :—Y
cyrmn) =1 -m [ [P P vy (2.12)
¥ . .

Remark: Tor given sample sizes m and n, the confidence
C, (A,m,n) depends only on the parameter 2, znd therefore,
C..(N,m,n) could be corputed for different values of m,n,A

d various distributicns.

)
H

3. CCMPZRISON OF CONFIDENCES

In this section, we compare the R-relisble intervals
for ¥ and 2 with X. The R-reliable interval depends on
reliability R and the sample sizes. For this reason, we
compore the R-reliable intervals for a given value of R.
For a given value of R, this is accomplished b; comparing
ne correspending confidences assoclated with these interwvals.

The distributicon free R-reliable interval for Y for a

glvern zzrple size o is (C,y(ﬂ)) with the associated confi-
V.
dence C,, fztermined by
4
Ce = PIDI0 < ¥ <~ ¥, ) >Bl=1-x5" (3.1)
Y RS (l".".) o i s . . L
Similarly +he DR-relialle inteorval for 2 is (O,&,m)) with
Laan
confilonce C,, as
4
n -
c, =1-E" . 12.2)
&
T v ocornpariooen purpneen, we deling the fcllovina:
Jotinitsion . ™o Rernliislle dntorwvale ore cousva.ont, or

- PO P N, - s be ~ P L .
o civen value of N, LI the crovroonenalng




Definition 2.

An R-reliable intarval T

(A) 1s said to be bett

T™ro-R-reliable intervals I, and I, with
ssociated confidences Cl(i) and C, (A} are

asymptotically eguivalent if

lim C. (A) = 1lim C,(A) . (3.3)

A+ CO Ao 2

Lemna 1. The limit as A approaches ® of £,/A is F " (R).
o

Proof:

Z&“ Lo o]
£
-
. 3
4
lim

hence

2

- -
- 1
S oa ]
. AN 2 pA ’
lim [/ £(z)F(5 - £)dz = R . -
Ar= 0
C”A
-
_A-z L—Z, tnen
5 >
E oo, v A 2yvin = [ £(an o
TP (= - side = | f(z;r{(f.jdz
PN £ Z (2 ¢
0 (2.4)
= (5.} = R
- - = <y
°z
-1 - -
r (n = “go (3.5}
oo nrove the foll-wing theorer.,
Teedarl 12 interc~l on the zuom M 1z Lzomntocs
cullyv gouivalant Lo the T-reliikle intorvol of o
v Dy Tronoccuntion (210, ve hove
n
~ . o - n-l . .7
! b = . - N : “ [ \‘/] [Y‘ - N - o - .




and from lemma 1, lim (£

E;;/A n-. 5?;
lim(Cy (A,m,n)) = 1 - n lim “ fl2){F(z)]° TR(alg - z)))'a
Ao C A+ 0
Se . .n-1 -
=1-n[% £(z)[F(2)] "Fl«)dz
0

£(z) [F{z)1" Laz

)1 =1 -’" =c,in) . (3.7)

]
=
1

[F(g,

Lemna 2: If h(X) and g(X) are increasing functions cf a

random variable X, then the covariance between h{X) and o (¥)

3

ositive.

is

rr

Proof: Let XO be a value of x such that

gX) - Z(g{X)] 2 0 for x < Xg -
Thezn
s
' .o . 4 - . -~ oA r
covih{¥),g D)) = ;| L) {zX) - Clg{M)]idr{n
—G
b
e Sy e s
= ;7 i) (g () - Elganjyar
-— L
(44
+ [ hi(z(c(x) ~ plglhlierun .
b
G
Since H(x) 1z increosring tien
. . oL . e -
cov RNy oy oo x;xc>(;!g} - Tl e [
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~h (%) (2(x)-Elg(X)1)aF (X)=h (x) [ (a(X) - Elg(X)]1)dF(X) =0

-0

Xn

where F(X) denotes the distribution function of X.

Corallary 1. If h(X) is an increasing function of X and g(X)
is a decreasing function of X then the covariance between
h(X) and g{X) is negative.
Proof: We note that -g(X) is an increasing function of X
and cov(h(X), -g(X)) > 0 from lemma 1. Hence,

cov (h(X),g(X)) > 0.

Theorem 2. For any sample size m and for n =1, the R-
reliable interval for X is better than the R-reliable interval

for 2. .

Proof: From equation (2.11)with n = 1, we obtain
Ea/R
m
CylA,m,1) =1 - [ £(z2)[F(g, - Aa)] az . (3.8)
0

Irn order to show that R-reliable interval Zor X is

better than that of Z, we show that C,(A,m,n) is a decreasing

X

Eiqy

function of A.

&£ /A

d }A/ m-1 ar R
— ; = - £ - ro=rz) (5= - .

3h CX(A,H,I) m é L(z)[F(EA Az) ] f(EA P )(dA z)dz
(2.9)
Tc find d{x/dA, we let m = 1 in eqguaticn (3.8). Thecn

%
C;(A,l,l) =1 = 6 f(?)F(EA - nT)dz

=1 - R for a1l A (3..0)
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g3 az
d . _ 5a . _ A - oy ca o
a—A'CX(r&,l,l) = 6 f(Z)‘(gA ;\Z) (—E‘:—; z)c2 0
Therefore
£ /A
- IA f(z)Ef(E, - Rz)dz
ag A
A 0 (3.11)
dA &A/A * =
7 f(z2)E(, - Az)az
A
0
“iow—E (C,(A,m,1)) < 0 if
: aa Tx v -
£,/A -
. A ) P (e, - 22) 1™ £(E, - Az)az
GSA 0 A A
> : (3.12)
da -E’A/A m~1
/ f(z)[F(EA - Az)]" £(g, - Az)dz
0 _
or
£,/A £ /A }_11
¥ asfig, - a2vaz [N zIF(g, - a2)1T T E(2)£(5, - R2)éz
0 , 0 :
&n/A =~ £t /B
AT, _ A = _ m-1 = ey a
s, - re)az g [F (g, - az)17 )25, - rz)dz
{3.13)
eguivalently
E;’ /B C.m=1
Ji [F(’:A - zz)l" ‘f(z)f(i,% - 2z)2z
0 & ’
g
(A c(zys(s - nz)az
‘ A
0
"’:x/A -
j[' ir(r - az) " 1.‘(:)‘(-’\ - nhz)dz
_ O F2s
LA
(P sys(n, - rziaz
O Sy
:‘ 2
S ozf(zyE(T, - ludz
e G o
;‘i‘:' xf"‘f’\'. - Lzdz h
0

PR U ._J
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or cov(z,[F(, - Az)]™ 1) < 0 . since [F(z, - az)]7 7! is

a decreasing function of 2z, from Corollarv 1,
cov(z,[F(c’,A - Az)]m_l) < 0. Therefore E%(Cx(h,m,l)) < 0 and
CX(A,m,l) is a decreasing function of A. Also from Theorem 1,
CX(A,m,l) is asymptatically eguivalent to Cz(l). Hence R-
reliable interval for X is better than that of Z.

Remark: For n = 1 and any m, CX(A,m,l) is a decreasing
function of A for A > 1. Hence Cx(l,m,l) is the maximum
value that CX(A,m,l) can attain. Also, A =1 implies that Y
and Z are identically distributed, therefore, Cx(l,m,l) is

the upper bound for CX(A,m,l).

Theorem 3. For any sample size n and for m = 1, the R-
reliable interval for X is better than the R-reliable inter-
val for Y.

Proof: e find

;—'"./A n-1
l1-¢.(nl;n) =n J [F(z)] (F(, - 2z)jf(z)dz
. 0 by
d L=y
- U (R o
= [F{— Y17y ey 3.24)
0
From the right hand side of eguation (3.14), it is cigsar
that the inteyral is a decroasing functien of n, honce
‘. o
A n=-1... . - CeATTT . -
n | (Fiz)] [(r{( - Y ji{zidz ! {7, -~ nz)f{zjdz
7 ’ A
0 ¢
Aba
) 7 -
. 5 i i r.-l . N 1\“ .
I -n Ttz T - A2)Yizide 1 - N - oz z




- ¥ ¥ - - =

Thus,

CX(A,l,n) >1 -R-= CY(l).

Remark: Theorem 2 could be proved the same way as
Theorem 3. It can be shown the CX(A,l,n) is an increasing
function of A, andé CX(A,l,n) is the minirum vzlue that
CX(A,l,n) can attain.

Now the generalcase where the sarmple sizes m and n
are both greater than one is considered. For this purpcse,

we prove the following lemma.

Lemma 3.3. For any m and n, CX(A,m,n) is an increasing

function of m and n.

Proof:
£,./B _ )
1 - c, (Ammn) =n 12 P (z))® 1(?(5A - 22)1%f(z)dz.  (3.15)
Q
EA m
Since F(EA - Az) < 1 for all z < —X , then [F(EA - 22)]"7 is

a decreasing function of m. Hence, CX(A,m,n) is an increas-
ing function of m. Eguivalently from eguation (=..7), we can

write

- S
1- CX(A,m,n) = m ?A [F(y)]m 1[?(-55—)]nf(y)dy. {2.16)
0
| S
. . Y
kAgain, since F(——X—) < 1 for 21l y < gA' then

A-y n ., . . .
[F(=—==—)1" is a decreacsing function of n. Thereiore
A
Cx(h,m,n) is an increasing function of n. Thus, Cy(h.r,n)
»
s

an increasing function of m and n.

-+
pe

—
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Theorem 4. For any sample sizes m and n creater than 1, the
R-reliable interval for the sum is better than the R-
reliable interval for the summand with the smaller sample
size.

Proof: § = min(m,n), then from Lemma 3.3 we get

CX(A,m,n) > CX(A,s,s) for all A. (3.17)

Since Cy (A,m,n) PIPIO < X < ¥y ¢+ Zyyd 2RI

= P[P0 < X' < ¥, . + 232 ] > R]
t

=PIy +AZ, > &gl

=1 - P[¥y +AZ, < £l

P[P[O0 < X < Yy * AZ(Sy] > R]

and CX(A,s,s)

= PlY () FRZ(, > E]

)

=1 - P[Y

(s) * Az(s) < 2.

Then the ineguality (3.17) becomes

'
n,n) = 1 - + A <f] >1-7 + 22
Cy (2,m,n) 1=PIY oy A2y 8] 21 - PlY  + 22, < 3
' ] (] '
- { = 3 ne c <« TIY 7 -
1 C, (A,m,n) P[z(m) * 22 < gl < [1(5) +:Z(S) S
{3.28)
Eince Y,S) + ;Z}q) > X}q) vhere X}s) is the largest of the
\ < o
o ! '*‘.l ' . TN
Set Yl + I.Zl, YZ .‘.22, e o« ey Ym + (\Zn, c.o€en
' 1 '
+ hZ sicix < 3.
[Y(s) Bligy Z s (s} — 2
Hence,
L-Ceamn) Dyl o+ 2z D S PIX ) L 7] 7 I-CrChis

W

Y
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4, CONFIDENCES ON THE R-RELIABLE INTERVALS
FOR EXPONENTIAL AND NORMAL DISTRIBUTION
The bounds considered in section three are nonparametric and
can be used for all continuous distributions on (0,»). However the
bounds do not give the confidences for specific values of A and

other parameters. In this section, confidences CX(A, m, n) of the

. R-reliable interval for the sum X = Y + Z is calculated when Y, 2

have exponentlal or normal distributions, These distributions are
widely used in applications and hence are chosen in finding confi-
dences. Since we are considering the distribution on (0,=) for
the normal case, we consider the folded normal distribution. The

p. d. £f. of the folded normal equation with scale 1/0 is given by

2
2 -3 c
f(}’) = 0‘12.{:‘ e 1(Y/ ) Iy 0<y >,

In order to find CX(A, m, n) at R = .9, the 90th percentile
of the distribution of X' = Y' 4+ AZ' is fcund using distributions
of Y' and Z'. Here Y', Z' are distributions with scale parameters
one. The integral expression for (2.11) is used to calculate the
confidences CX(A, m, n). The sample sizes m and n chosen to be
m=1, 2, 4, 6, 8, 10, and n =1, 2, 4, 6, 8, and 10, and A is taken
from 1 to 100 for exponential distribution and A is taken froum 1
to 20 for normal distributions, For larger values of A, in the
case of normal distribution, the confidences CX(A’ m, n) do not

vary nuch. We first consider the exponential distributien.
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4.1, - Exponential Distribution

The pdf of the random variable Y~ distributed as exponential is

given by

£(y7) = exp(-y)) , 0<y <=,

0 elsewhere , (4.1,

and the distribution function of Y~ is

FY,(y‘) o, y <0,

[]

1 - exp(-y7) , 0y <=. (4.2)

The cdistribution of Z” is identical to that of Y°. Using the independence
of Y7 and 27 and their pdf's, the distribution function of X~ = Y + AZ”

is found to be
x“/A px7-Az”
Gx4(x') =/ f exp(-y”) exp(-z”) dy~ dz~
0 0

.1+ exp(-x") ; f iXP('X /2) , 0 < x" <=, (4.5

and GX,(x') is zero for x” < 0. With x”~ = £ _, the QOth percentile of X~
is fcund by

exp(~£ g) - A exp(-E /a)

Gxa(i.g) =14+ F = .9, (alg)

and the confidence Cx(m,n) using Equation (2.1]) anc the distribution

functions and pdf's of Y* and Z~ becomes

N
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Y

° .y - "l ( .. - - LN
(myn) =1 -n (1= exp(-27))" -:1 - exp[- G g - Az )]}

(&

exp(-z7) éz” . (. 4.3)

A -~ - P :
Values of Cx(m,n) snd £ 9 for selected A, m, and n avte tabulated in

Zable 1.

.+ 5 Folded Nermal Distributicn

Let Y” aad 2” be independent and identically distributed as

£0lded normals on (0,.). The pdf of Y is given by -

Iy, o= ’._:;C‘?‘i}’\"‘f\ ), C <y <o,
= 0 elsewhere , (4.0)
and the distribution function of Y is
?x‘(\’)=0, v <0,
N 2, )
-/ ,’;}?’»n(-‘atvdt, Cgy’ c=, teur)
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Iable 1. The Confidence C,.f(A,m,n) of the R-Reliable Interval
on the Sum of Two Continuous Random Variables with
Exponential Distributions with 90 Percent Reliability
n= 1 A £ m= 1 2 4 6 8 10
1. 3.89 0.10 0,16 0$.25 0.33 0.39 0.44
2. 5.94 0.10 0.13 0.18 0.21 0.24 0.26
3. 8.12 0.10 0.12 §.15 0.17 0.18 0.20
4, 10.36 0.10 0.11 §.13 0.15 0.16 90,16
5. 12.63 0.10 0.11 0.13 0.13 0.14 0,15
6. 14.91 0.10 0.71% 0.2 0.313 0,13 0.4
7. 17.20 0.1 0.11 0,12 0.12 0.13 0.13
8. 19.49 0.10 0.11 2,11 ¢.12 0.12 0.13
9. 21.78 0.10 0.11 0.11 0.12 0.12 0.12
10. 24,08 0.10 0.11 0.11 0.12 0.i2 0.12
- 20. 47.08 0.10 0.10 0.11 O0.11 0.11 0.11
30. 70.09 0.10 0.10 0.10 0.10 0.1t 0.M
40. 93.12 0.10 0.10 0,310 0.10 0.10 ©0.10
50. 116.14 0,10 0.10 0.70 0.10 0.10 0.10
100. 231.26 0.10 0.i10 0.10 0.10 0.710 0.10
© © 0,10 0,10 0.10 0.10 0.10 0.10
n= 2 A 3 m= 1 2 4 6 8 10
1. 3.89 0.16 0.24 90.36 (.45 0.%2 0.57 1
2. 5.94 0.78 0.23 ©0.30 0.35 0.39 0C.u42
3. 8.12 0.376 ¢.22 C.27 0.30 C.32 0.:%
y, 10.36 0.19 0,21 C.25 0.27 0.28 9.7
5. 12.63 0.19 0,21 $.23 0.25 0.26 0.27 4
6. h.9n 0.19 ©.21 0.23 0.24 02,25 Q.26 )
7. 17.20 0,19 0.20 0,22 0.<3 0.24 0.25
8. 19.L9 C.19 .20 C.22 0.23 0.23 <t.z4
9. 21.78 0.16 0.20 ¢.21 0.2 0.23 0.23
10. 24,08 .19 (.20 C€.21 C.22 Q.22 ,23
20.  47.08 0.79 0.19 .20 0.20 0.21 0.21 )
30. 70,09 0.6 0.19 ¢.20 0.2 t.20 2.20
40. 93,12 ¢.19 0.19 0.20 ©0.20 0.20 0.20 '
50, 116,14 .79 0.19 0.19 0.20 .20 0,20
100, 231.26 &.79 0,19 C.19 0.19 0.79 0.19
o o G B U G * B O B ¢.16 C.19
|
(|
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Table 1. (continued)
n= 4 A £ m= 2 4 6 8 10
1. 3.89 0.25 0.36 0.50 0.60 0.67 0.72
2. 5.94 0.32 0.39 0.48 0.54 0.58 0.62
3. 8.12 0.33 0.38 0.45 0.49 0.52 0.55
4.  10.36 0.34 0.38 0.42 0.46 0.u48 0.50
5.  12.63 0.3% 0,37 0.41 0.43 0.45 0,47
6.  14.91 0.3% 0.37 0.40 0.42 0.43 0.45
7. 17.20 0.34 0.36 0.39 0.41 0.42 0.43
8. 19. 49 0.34 0.36 0.38 0.40 0,41 0.42
9., 21.78 9.34 0.36 0.38 0.39 0.40 0,41
10, 24.08 0.3% 0.36 0.38 0.39 0.40 0.40
' . 20,  u47.08 0.34 0.35 0.36 0,37 0.37 0.37
0. 70.09 0.3% 0.35 0.35 0.36 0.36 0.36
U, g3,1 0.34 0.35 0.35 0.35 0.36 0.36
50. 116.14 0.34% 0.35 0.35 0.35 0.35 0.36
100, 231.26 0.35 0.35 0.35 0.35 0.35 0.35
i o ® 0.34 0.34% 0.34 0.3% 0.34 0.3l
n= 65 A £ m= 1 2 4 6 3 10
! 1. 2.8 0.33 0.45 0.60 0.69 0.76 9.8)
2. 5. 94 0.42 0.50 0.60 0.66 0.71 0.7
3. §.12 0.45 0.51 C.58 .62 0.65 0.58
4, 30.36 0.46 0.50 0.56 0.53 0.62 Q.54
5.  12.63 0.46 0.50 0.54 0.57 C.59 0.61
, 6. 14,91 0.46 0.49 0.53 0.55 0.57 0.58 9
7. 17.20 0.47 0.49 0.52 0.54 0.56 0.57
g,  19.49 0.47 3.49 ©0.52 0.53 03.55 90.56
9,  21.7 0.47 0.49 5.51 0.53 0.54 0.55
10, 24,08 J.47 0,49 0.51 C.52 0.53 0.54
2G. 87,78 U.47  0.48 0.%9 G.43 .50 0.50
) 20, 70.09 2.47 ©0.47 0.48 0,49 0,49 0.49 . 4
40, Q3,12 0.47 0.47 0.48 05.u48 ¢C.48 0.49 i
50, 116,14 0.47 0.47 D.48 0.u8 .48 0.48 ’
03, 231.2 GLUT O D.U4T  0.47 0,47 0.47 0.Uu8
« « DL4T  0.87  DL8T 0,47 0,47 0.47




————— e — = L -

(continued)

Table 1.
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Lt Gx,(x') be the distribution functionm of X7 = Y7 4+ AZ7; then

GX‘(X‘) is Zound to be

1]
o
-
»
\
A
o
-

Gx,(x )

x7/A pxT-Az” , )
= Z exp(-’fay'z) * —— exp(-%2”7) dy” dz”7,
\’2—1? )/-Z—;T- :
0 *0
0 _(. x‘ < e (4-8)

Iquation (%4.0.) is used to f{ind the 90th percentile of the distribution of
X’. T7The expression for Cx(m.n) using Equation (2.11) and the pdf and

the dostritution fuaction of Z7 becomes

. ‘ E,.Q/A Z’ 2 2 n-1
Cx(r.,n,; =1-a [f - exp(~kt”) dt]
o V27
0
£ ~az2” m ”
' [f T 2 kp (k) dt] 2 ewp(-ka?) d2t . (509)
0 vﬁ Van

ircugh Fquations (4.8 3 and (4.9). These values are seen in Takle 1.
The normal cistrituticon ic the last of the symmetric distributicns
which are considered here, because it is by far the most widely used
svmmetric distrisution. This distribution is alsc folded sc that it

souid be used in this study.

il




_ Table 2. The Confidence C_(A,m,n) of the R-Reliable Interval
H on the Sum of Two Continuotis Random Variables with Folded

Normal Distributions with 90 Percent Reliability

y' n= 1 A E m= 1 2 ] 6 8 10
1. 2.77 9.10 0.17 0.26 0.32 0.37 0.4
2. L. 27 0.0 0.4 0.18 0.21 0.23 0.25
3. 5.87 0.10 0.%'3 0.1 0.17 0.18 0,19
4, 7.49 0.10 0.12 0.14 0.15 9,16 0,17
F; 5. 9.13 0.10 0.12 0.13 0.14 0.15 0.15
6. 10.77 0.10 O0.%1 0.13 0.13 0.14 0,14
T. 12,42 0.10 0.11 0.12 0.13 0.13 0.4
8. 14.06 0.10 0.11 0,12 0.13 0.13 0.13
| 9. 15. T 0.10 0.11 0.12 0,12 0.13 0.13
° 10. 17.36 0.10 0.1t 0,12 0.12 0.12 0.13
20, 33.88 0.10 0.11 0.11 0.11 0.11 0.1
© © 0.10 0.3 0.10 0.0 0.10 0.10

ns= 2 A £ m= 1 2 ) 6 8 10
1. 2,77 0.16 0.26 0.39 0.47 0.54 0.59
2. 4,27 0.18 0.24 0.317 0.36 0.39 0.42
3. c.87 0.18 0.23 0.27 0.30 0.32 0.34
4, 7.49 0.19 0.22 0.25 0.27 0.29 0.30
5. 9.13 0.19 0.21 0.24 0.25 ©€.27 90.28
5 10,77 0.19 0.2% 0.23 0,24 0.25 0.26
7 12.42 J.19 0.20 0,22 C.23 02.24 0.25
8 14,06 0.19 0.20 0,22 0.23 (.24 0.24
9 5.7 0.19 0.20 o0.22 0.22 0,23 0.23
10, 17.36 0.19 0.20 0.21% 0.22 0.23 0.23
20, 33.88 0.19 0.19 o0.20 ¢€,20 0.21 o.21
© ™ 0.19 0.19 0.19 0,19 0.19 0.19

d
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' Table 2 {(continued)
h n= 4 A £ m= 1 2 4 6 8 10
2
1. 2.77 0.25 0.39 0.55 0.65 0,72 0.76
2. 4,27 0.31 0.4 0.51 0.57T 0,61 0.64
k‘ 3. 5.87 0.33 0.39 0.4 0.51 0.53 0.56
4, 7.49 0.33 0.38 O0.44 0,47 O0.49 0.51
5. 9.13 0.3% 0.37 0.42 0,44 0.46 0.47
! 6. 10.77 0.34 0.37 0.40 0,43 0.44 0.45
i 7. 12,42 0.3% 0.37 0.40 0,41 0.42 0.43
8. 14,06 0.3 0.36 0.39 0.40 0.41 0.42
i 9. 5.7 0.3% 0,36 0.38 0.40 0,41 o.M
i ' 10. 17.36 0.34 0.36 0.38 0.39 0.40 o.M
20. 33.88 0.34 0.35 0.36 0.36 0.37 0.37
© ® 0.34 0.34 0.34 0.34 0,34 0.34
ns= 6§ A 3 m= 1 2 [ 6 8 10
1. 2. 77 0.32 0.47 0.65 0.75 0.82 0.8
2. 4,27 0.42 0.%2 0.64 0.70 0.74 0.77
3. 5.87 0.44 0,52 0.60 0.64 0.6T 0.70
4, 7.49 0.45 0.51% 0.57 0.61 0.63 9.65
5. 9.13 0.46 0.50 0.55 0.58 0.60 0.61
5, 10.77 0.46 0,50 0,54 0.56 0.58 0.59
7. 12.42 0.46 0.49 0.53 0.55 0.56 0,57
8. 14,06 C.46 0,49 0.52 0.54 0.5 0.56
9, 15. 71 0.46 0,49 0.51 0.53 0.54 0.55
10. 17.36 0.46 0.48 0.51 0.52 0,53 0.54
20. 33.88 0.46 0,47 O0.49 0,49 0.50 0.50
o ® 0.47 O0.47 0.47 Q.47 0.47 0.47

St e o




Table 2 (continued)

n= 8 A £ m= 1 2 4 6 8 10

.27 0.37 0.54 0.72 0.81 0.8 0.90

2. w427 0.50 0.61 0.72 0.78 0.82 0.85

3.  5.87 0.53 0.61 0.70 0.74 0.77 0.79

i 4. 7.49 0.55 0.61 0.67 0.71 0.73 0.75
5. 9.13 0.55 0.60 0.65 0.68 0.70 0.72

6. 10.77 0.56 0.60 0.64 0.67 0.68 0.69

7. 12,42 0.56 0.59 0.63 0.65 0.67 0.68

' 8. 14,06 0.56 0.59 0.62 0.64 0.65 0.66
| 9. 15.71 0.56 0.59 0.62 0.63 0.65 0.65
i 10.  17.36 0.56 0.59 0.61 0.63 0.64 0.65
o 20.  33.88 0.56 0.58 0.59 0.60 0.60 0.61
: ® w 0.57 0.57 0.57 0.57 0.57 0.57

n=10 A £ m= 1 2 ) 6 8 10

1. 2,77 C.41 0.59 0.76 0.85 0.90 0.93

2. w21 0.56 0.68 0.79 0.84% 0.87 0.90

3.  5.87 0.61 0.69 0.77 0.81 0.83 0.85

4. 7.49 c.62 ©0.69 0.75 0.78 0.80 0.82

5. 9.13 0.63 .68 0.73 0.76 0.78 0.79

’ 6. 10.77 0.64 0.68 0.72 0.74 0.76 0.77
{ 7. 12,42 0.54 ©.67 0.7 0.73 C€.75 0.76
8. 14,06 .64 0.67 0.70 0.72 0.73 0.74

9. 15,71 C.64 0.67 0.70 0.71 0.73 0.73

j 10,  17.36 0.64 0.67 0.63 0.71 0.72 0.73
: 20.  33.88 0.64 0.66 0,67 0.68 0.68 0.69
= w % 0.65 0.65 0.65 0.65 C.65 0.65




5. CONCLUSION AND RECOMMENDATIOXNS

The numerical calculations enable us to find the values for the
confidences on the sum of two continuous, independent, random variables
for various distributions. These values of CX(A,m,n) are useful when
the exact confidences are required. But, to obtain these values not
only the ratio of the scale parameters of the summand variables have to
be estimated but also their distributions have to be known.

A nonparametric bound for the confidence of the R-reliable
interval on the sum was found based on the largest order statistics.

This was the result of Theorem 4. stating that -

€ (A,mn) > min [Cy(m), C,(n)] =min (1 - R", 1 - R")

which depends only on the sample sizes and the reliabilitv but not on the
estimate of the variances or the distributions of Y and Z. Also, the
monotonicity of CX(A,m,n) with A was proved for n =1, m > 1 and for

m= 1, n>1. This research could be extended bv considering a two-
sided R-reliable interval for Y and Z and, therefore, a two-sided
R-reliable interval for their sum X. Other statistics such as the range

or the max -] can be used which might lead to a better

Yy, ly
[ (n (m)
bound for the confidence of the R-reliable interval on the sum. The

tables of the values of CX(A,m,n) surgest that the confidence on the cum

is decrcasing with A for equal samnle sizes greater than ene. This

aba
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result would be usefiul tecause it suggests that for equal sampie sizes
sreater than one, the best confidence on the sum X is obtained when the
distributicas of summand variables Y and Z are identical. Study of
particular classes of distributlons such as the Exponential class
defined on (U, =) or the Symmetric class defined on (-, ®) mizht lead

to more speciiic results for the coniidence on the sum which may be use-

ful for thoese distributicns.
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